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ABSTRACT
The search for effective COVID-19 management 
strategies continues to evolve. Current understanding 
of SARS- CoV-2 mechanisms suggests a central role for 
exaggerated activation of the innate immune system as 
an important contributor to COVID-19 adverse outcomes. 
The actions of colchicine, one of the oldest anti- 
inflammatory therapeutics, target multiple mechanisms 
associated with COVID-19 excessive inflammation. 
While many COVID-19 trials have sought to manipulate 
SARS- CoV-2 or dampen the inflammatory response once 
patients are hospitalised, few examine therapeutics to 
prevent the need for hospitalisation. Colchicine is easily 
administered, generally well tolerated and inexpensive, 
and holds particular promise to reduce the risk of 
hospitalisation and mortality due to COVID-19 in the 
outpatient setting. Successful outpatient treatment of 
COVID-19 could greatly reduce morbidity, mortality 
and the demand for rare or expensive care resources 
(front- line healthcare workers, hospital beds, ventilators, 
biological therapies), to the benefit of both resource- 
replete and resource- poor regions.

INTRODUCTION
As of 27 October 2020, almost 1 year after the 
first reported cases, the SARS- CoV-2 had resulted 
in over 43 million people infected and over 1.1 
million deaths from COVID-19 worldwide.1 Clin-
ical experience and data underline the role of exces-
sive inflammation in the pathophysiology of the 
disease and suggest a potential role for colchicine, a 
drug with pleiotropic effects.

BIOLOGY OF COVID-19: THE ROLE OF 
INFLAMMATION
COVID-19 progression can be divided into three 
distinct phases (figure 1) including: (1) early infec-
tion phase, wherein the virus infiltrates host cells 
in the lung parenchyma; (2) pulmonary phase, in 
which viral propagation causes lung tissue injury 
as the host immune response is activated and (3) 
the inflammatory cascade, which is triggered by 
pathogen- associated molecular patterns (ie, viral 
RNA) and damage- associated molecular patterns 
(DAMPs, ie, cellular debris released during pyro-
ptosis) exposed during active viral replication 
and release. This third phase of the inflammatory 
cascade may occur even as viral titers are falling 
and is comprised of components targeted by 
colchicine (activation of the inflammasome that 
drives the cytokine storm, activation of neutro-
phils and the neutrophil/thrombosis interface)2 
(figure 2).

Activation of the inflammasome
Signals driven by SARS- CoV-2 act on macrophages 
and other myeloid cells to drive assembly of a proin-
flammatory protein complex, the nod- like receptor 
protein 3 (NLRP3) inflammasome,3 composed of 
NLRP3, apoptosis- associated speck- like protein 
adaptor and cysteine- dependent aspartate- directed 
protease-1 (caspase-1).4 Activated caspase-1 activity 
then converts the precursors pro- interleukin 
(IL)-1β and pro- IL-18 to their active forms. Addi-
tionally, caspase-1 activates Gasdermin- D, forming 
pores in the cell membrane permitting large- scale 
secretion of IL-1β that, among other actions, 
induces macrophages to release large quantities of 
additional pro- inflammatory cytokines.5 6 IL-1β, 
tumour necrosis factor (TNF) and ligation of toll- 
like receptors activate NF-κB3 and further upregu-
late the inflammasome. IL-1β and other cytokines 
additionally recruit large numbers of leukocytes 
from the marrow, which in turn undergo activation 
and cytokine production in an accelerating spiral. 
In the related SARS- CoV-1, a small envelope (E) 
protein augments this reaction by self- assembling 
into an ion channel within the host cell membrane, 
causing calcium dysregulation that promotes 
further assembly and activation of the NLRP3 
inflammasome.7 More study is needed to determine 
if the E protein of SARS- CoV-2 has a similar effect 
on the inflammasome.

The production of IL-1β drives the synthesis of 
IL-6, a cytokine that induces C reactive protein 
(CRP) and has been especially implicated as a major 
proinflammatory agent in the COVID-19 cytokine 
storm.8–11

Activation of neutrophils
Cytokines including IL-1β and IL-6 prime neutro-
phils for activation by chemoattractants and upregu-
late intercellular adhesion molecules on endothelial 
cells. The resulting neutrophil adhesion to the vascu-
lature promotes neutrophil diapedesis and infil-
tration into the affected tissues—in COVID-19 
infection, initially into lung parenchyma, but later 
into other organs. Once neutrophils migrate to sites 
of inflamed tissue, they degranulate and release 
proinflammatory cytokines and chemokines, prote-
ases, antiviral proteins and toxic oxygen radicals. 
In the myocardium, neutrophils -play a prominent 
role in the development of myocarditis and cardio-
genic shock.12–14

Neutrophil/thrombosis interface
Neutrophils trigger a cascade of events in arteries 
that promote plaque destabilisation/rupture and 
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thrombosis.15–18 Neutrophils release the serine protease neutro-
phil elastase, which inhibits tissue factor pathway inhibitor and 
leads to generation of thrombin, the most potent activator of 
platelets. Neutrophil extracellular traps provide a platform to 
activate coagulation via active neutrophil elastase adherent to 
extracellular neutrophil DNA.19 20 Activated neutrophils and 
other leukocytes also aggregate with platelets directly to further 
exacerbate inflammothrombosis.21–23 24 In the setting of extreme 

inflammatory states, activated neutrophils adhere directly to 
each other (leukoaggregation), producing effective but usually 
transient vascular occlusions.25 Finally, neutrophils contribute 
to thrombosis via cytokine- induced release of α-defensin from 
neutrophil granules.26 27 Murine studies suggest that α-defensin, 
at concentrations similar to those observed in inflammatory 
conditions, results in accelerated, larger and denser thrombus 
formation.28 29 Human data suggest that patients with COVID-19 

Figure 1 Model of COVID-19 severity. IL, interleukin.

Figure 2 Proposed pathophysiology of acute vascular inflammation in SARS- CoV-2 viral illness and potential therapeutic targets of colchicine. 
(A) Macrophage- driven inflammation leads to inflammasome activity, cytokine production and endothelial and neutrophil activation, with surface 
expression of selectins, integrins and intercellular adhesion molecules promoting neutrophil adhesion to the vasculature. Colchicine inhibits E- selectin 
and L- selectin expression on neutrophil and endothelial surfaces. (B) Neutrophils migrate through the endothelium following chemoattractant 
gradients. Colchicine impairs the rheologic properties of the neutrophil cytoskeleton, limiting theirability to transmigrate. (C) Inflammasome- generated 
cytokines, including IL-1β and IL-6, drive additional macrophage activation and cytokine production, in an accelerating pattern known as a cytokine 
storm. Colchicine inhibits the NLRP3 inflammasome, with the potential to prevent the development of cytokine storm. (D) Neutrophil activation 
releases neutrophil elastase, which inhibits tissue factor pathway inhibitor. Diminished tissue factor pathway inhibitor activity, along with endothelial 
injury, promote thrombin generation and platelet activation. In addition, neutrophils release α-defensin, associated with larger and more extensive 
thrombi. Colchicine inhibits neutrophil elastase and α-defensin release. (E) Neutrophils interact with platelets to form aggregates that are a feature 
of thrombosis. Colchicine decreases neutrophil- platelet aggregation. CRP, C reactive protein; IL, interleukin; NLRP3, nod- like receptor protein 3; TNF, 
tumour necrosis factor.
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infection have elevated levels of serum α-defensin proportional 
to COVID-19 disease severity.30

Clinical implications
The connections between inflammation, thrombosis and 
poor COVID-19 outcomes are well established. On admis-
sion, patients from our own institution who were admitted 
to regular floors but subsequently transferred to the intensive 
care unit (ICU) had higher CRP concentrations (159±86 mg/L) 
than patients admitted to the regular floors overall (114±81 
mg/L). On transfer to the ICU, CRP concentrations (184 mg/
L±104) were higher still (unpublished, figure 3). Manifesta-
tions of profound inflammation in severe COVID-19 include 
acute respiratory distress syndrome and distributive shock.14 15 17 
Myocardial injury due to acute coronary syndrome (type 1) and/
or supply- demand mismatch in the setting of profound inflam-
matory response and haemodynamic changes (type 2) is also 
significantly greater in those with severe COVID-19.31 Vascular 
inflammation is associated with a large burden of both venous 
(deep venous thrombosis, pulmonary embolism) and arterial 
(myocardial infarction, stroke) thrombus.

Severe COVID-19 has also been characterised by extrapulmo-
nary and extravascular manifestations. Acute kidney injury may 
be a result of direct inflammatory injury, given evidence of acute 
tubular necrosis with lymphocyte and macrophage infiltration of 
the tubulointerstitium on histopathology.32 The mechanism(s) of 
COVID- related hepatic injury remains unclear but preliminary 
studies suggest that the ACE2 receptor is preferentially expressed 
in cholangiocytes, suggesting that liver involvement may require 

direct SARS- CoV-2 infection and injury of cholangiocytes.33 34 
Cytokine storm itself can drive multisystem organ injury overall.

Together, these observations suggest that an anti- inflammatory 
agent with limited immunosuppressive potential could prove 
useful in preventing severe inflammatory injury and promoting 
improved patient outcomes.

COLCHICINE
Historical perspective
Although colchicine first received approval from the US Food 
and Drug Administration in 2009, its modern use dates back 
two centuries. Indeed, papyri dating from 1500 BC describe the 
use of colchicine’s source plant—Colchicum autumnale—for 
pain and inflammation, making colchicine one of the world’s 
oldest anti- inflammatory therapeutics.35 Currently, colchicine 
is approved for treating and preventing acute gout and familial 
Mediterranean fever, and is used off label in Behçet’s disease, 
pericarditis and other inflammatory conditions.36

Colchicine and microtubules: inhibition of neutrophil activity
Microtubules are dynamic proteins that form via polymerisation 
of α-/β-tubulin dimers. Colchicine irreversibly intercalates into 
free α/β dimers that incorporate into and block microtubule 
extension.37 During inflammation, microtubules facilitate the 
movement of adhesion molecules onto cell surfaces. Colchicine 
concentrations are much higher in neutrophils than other leuko-
cytes due to diminished activity of the P- glycoprotein membrane 
efflux pump that serves as an energy- dependent colchicine efflux 

Figure 3 Markers of inflammation and thrombosis in patients admitted to the hospital for COVID-19. Admission inflammatory markers were 
obtained for all patients admitted to the regular (non- ICU) floors of NYU Langone Hospital for the first weeks (March–April 2020) of the COVID-19 
pandemic surge in New York City. Among patients admitted to the regular floors, those who were subsequently transferred to the intensive care unit 
(ICU) had higher C reactive protein (CRP) levels than the group overall; among those transferred to the ICU, both CRP and D- dimer levels in the ICU 
were increased compared with prior to transfer, indicating that a worsening inflammatory state is a feature of more severe disease. Not shown in the 
figure: individuals admitted to the regular floors who were subsequently transferred to directly to the ICU also had higher ferritin levels than the non- 
ICU group overall (1452 vs 1178 mg/dL), and their mean ferritin level was found to be increased further on transfer to the ICU (1876 mg/dL).
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transporter.38 Thus, neutrophils appear to be more sensitive than 
other cells to lower serum concentrations of colchicine. Cronstein 
et al demonstrated that colchicine causes a quantitative decrease 
in leucocyte (L)- selectin expression and diminishes qualitative 
expression of endothelial (E)- selectin, two proteins involved in 
rolling and adhesion of neutrophils on endothelium.39 Disrup-
tion of microtubules also inhibits neutrophil rheologic capacity, 
inhibiting their transmigration out of blood vessels.40

Additional studies show that colchicine directly inhibits intra-
cellular neutrophil signalling and lysosomal enzyme release 

during phagocytosis. Colchicine- mediated inhibition of chemo-
attractant release (eg, leukotriene B4) suppresses neutrophil 
adhesion to inflamed endothelium.41 Colchicine also inhibits 
calcium influx, which raises intracellular cyclic adenosine mono-
phosphate (cAMP) levels and dampens neutrophil responses.42 
In lipopolysachharide- stimulated neutrophils, we observed that 
colchicine can dampen stimulated neutrophil metabolism as 
measured by extracellular acidification (unpublished, figure 4).

Colchicine and the inflammasome: inhibition of IL-1β and 
prevention of the cytokine storm
More recently, colchicine has been shown to decrease cyto-
kine production by inhibiting activation of the NLRP3 inflam-
masome (figure 5). The mechanism(s) of colchicine’s action on 
the inflammasome remain an area of ongoing investigation.43 44 
Colchicine’s interruption of inflammasome activation reduces 
IL-1β production, which in turn prevents the induction of IL-6 
and TNF and the recruitment of additional neutrophils and 
macrophages.45 46 Whereas the effect of specific anti- IL-6 inhibi-
tion for COVID-19 treatment is somewhat controversial (online 
supplemental text 1), the ability of colchicine to affect multiple 
cytokines may offer unique advantages.

Colchicine and the Inflammation/thrombosis interface
Murine models show that colchicine inhibits neutrophil release 
of α-defensin, thereby potentially preventing large thrombus 
burdens.29 47 At supratherapeutic concentrations, colchicine, 
through its microtubule effects, converts normal discoid plate-
lets to rounded, irregular structures and inhibits platelet activa-
tion by decreasing calcium entry.48 These mechanisms diminish 
in vitro platelet- to- platelet aggregation. In contrast, we demon-
strated that standard clinical doses of colchicine do not decrease 
platelet- to- platelet aggregation but do diminish neutrophil- to- 
platelet aggregation,49 suggesting that colchicine at physiolog-
ical doses may provide an inhibitory role at the inflammation/
thrombosis interface without comprising homeostatic platelet- 
to- platelet function. Indeed, in vivo colchicine has not been 
shown to inhibit non- inflammatory- related thrombosis.

Adverse effects of colchicine
Colchicine metabolism occurs primarily inside hepatocytes via 
the cytochrome P450 3A4 (CYP3A4). Medications that strongly 

Figure 4 Neutrophil metabolism in the presence of colchicine. Neutrophils were purified from healthy volunteer whole blood using the MACSxpress 
whole blood neutrophil isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and separated into four aliquots. Neutrophils were coincubated 
with and without lipopolysaccharide (LPS) and with and without colchicine. In vitro quantification of neutrophil metabolism, measured as extracellular 
acidification rate (ECAR) (mpH/min), was evaluated using a glycolysis stress test using a Seahorse XFe24 analyzer (Agilent Technologies, Santa Clara, 
California, USA). Using a modified assay, cells were first incubated with activators (LPS 10 ng/mL with or without colchicine 15 nM) for 10 min.

Figure 5 Colchicine inhibits inflammasome action and reduces 
supernatant levels of IL-1β. THP1 cells (macrophage cell line) were 
stimulated with monosodium urate (MSU) or calcium pyrophosphate 
dihydrate (CPPD) crystals in the presence or absence of colchicine. 
Supernatants were analysed for IL-1β by Western blot. For the purposes 
of this figure, the original published blot was quantified using Image J. 
Adapted from Martinon et al.43
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inhibit CYP3A4 metabolism (eg, ritonavir, ketoconazole, clar-
ithromycin, cyclosporine, diltiazem, verapamil) pose a risk of 
drug- drug interactions. A small number of publications report 
cases of death after coadministration of clarithromycin and 
colchicine in patients with severe chronic renal disease.50 51 
Similar cases have been rarely reported in patients receiving 
atorvastatin, a statin that is also processed by CYP- 3A4, but 
not with statins that are not metabolised through CYP3A4. In 
a recent placebo- controlled randomised trial of 4745 patient 
with a recent myocardial infarction, patients receiving daily 
colchicine experienced no adverse effects related to the coad-
ministration of statins, including atorvastatin.52 In another 
recent placebo- controlled randomised trial of 5522 patients 
with stable coronary artery disease, daily colchicine resulted in 
numerically higher rates of myalgia (HR 1.15, 95% CI 1.01 to 
1.31) and one case of rhabdomyolysis (the patient made a full 
recovery).53 However, a non- significant trend towards increased 
non- cardiovascular death was observed that requires further 
investigation. Overall, reports of severe colchicine toxicity tend 
to occur in the setting of errors in colchicine prescribing.

Approximately 10%–20% of colchicine is excreted renally.36 
However, dose reductions may only be necessary in patients 
with severe renal impairment.54 As a lipophilic molecule, colchi-
cine is usually protein- bound in plasma, with P- glycoprotein 
in the intestinal lining serving as the primary protein for gut 
excretion of colchicine. Cyclosporine and ranolazine compete 
for the ligand site on P- glycoprotein and can therefore lead to 
delayed elimination. At higher concentrations for longer dura-
tions, particularly in the setting of kidney disease, colchicine has 
been reported to occasionally induce a reversible neuromyop-
athy. Acute overdose may cause multiorgan system failure and 
death. Furthermore, increased adverse events may be noted in 
the simultaneous presence of moderate renal insufficiency with 
use of multiple CYP3A4 inhibitors.

A meta- analysis of 35 randomised trials of colchicine versus 
placebo found that the most common and significant adverse 
effect was diarrhoea.55 56 The only other adverse effect that 
occurred at a greater frequency than placebo was a set of pooled 
gastrointestinal symptoms including nausea, vomiting, diar-
rhoea, abdominal pain, loss of appetite, and bloating. A striking 
finding in this meta- analysis was the absence of increased infec-
tion rates in the colchicine compared with the placebo arm. 
However, in contrast to most available data, one retrospective 
and one prospective study did report increased pneumonia risk 
with colchicine (online supplemental table 1).

COLCHICINE AND COVID-19: THE CLINICAL CASE
Several of the biological therapies that have been studied and/or 
used in the setting of severe SARS- CoV-2 infection target some 
of the same pathways as colchicine, including IL-1β (ie, anakinra) 
and IL-6 (ie, tocilizumab and sarilumab).57 Colchicine differs 
from these agents in having pleotropic mechanisms of action, 
being less potent on any single target, and being an oral agent. 
In contrast to the biological agents used in the midst of cyto-
kine storm, colchicine is not immunosuppressive, is not known 
to increase risk of infection, and is inexpensive. A review of the 
mechanisms of SARS- CoV-2 and colchicine in parallel reveals a 
potential intervention point that may prevent the progression 
from inflammatory activation (phase 2) to a hyperinflammatory 
state (phase 3). Taken together with the clinical data described 
herein, the potential benefits of colchicine are suggested to 
be maximised when used early in the disease process (ideally 
prior to phase 2, but certainly prior to phase 3), such as in 

non- hospitalised patients within a few days of diagnosis regard-
less of symptoms and/or within a few days of hospitalisation if 
not already critically ill. However, the optimal timing continues 
to require further investigation.

Colchicine in non-rheumatological inflammatory conditions
Multiple randomised studies have evaluated the use of colchi-
cine in non- rheumatologic inflammatory conditions. Two 
randomised trials in acute pericarditis demonstrated lower 
recurrence rate with colchicine versus conventional or placebo 
therapy.58 Colchicine reduced symptom persistence 72 hours 
after treatment initiation, and colchicine was beneficial even in 
the setting of recurrent pericarditis.59 Used after cardiac surgery, 
colchicine appears to prevent the inflammatory postpericar-
diotomy syndrome.60

Colchicine may reduce risk of acute myocardial infarction 
(AMI). We demonstrated an association between daily colchi-
cine use and decreased prevalence of AMI in patients with gout, 
a non- traditional cardiovascular risk factor.61 62 These findings 
were subsequently reproduced in an independent gout popula-
tion.63 Two open- label prospective studies of daily colchicine use 
versus no colchicine use in patients with stable coronary artery 
disease already on aspirin and high- intensity statin therapy 
demonstrated a decrease in CRP levels with low- dose colchicine, 
and a significant reduction in cardiovascular events with daily 
colchicine vs no colchicine.64 65 The reduction in the primary 
clinical outcome was driven primarily by a reduction in AMI.65 
The multicentre, double- blind COLchicine Cardiovascular 
Outcomes Trial (COLCOT) randomised 4745 patients within 30 
days of AMI to colchicine or placebo and demonstrated a reduc-
tion in the primary composite endpoint of cardiovascular death, 
resuscitated cardiac arrest, AMI, stroke or urgent revascularisa-
tion with colchicine.52 The multicentre, double- blind Low Dose 
Colchicine 2 (LoDoCo 2) trial randomised 5522 patients with 
stable coronary artery disease and also demonstrated a reduc-
tion in the primary composite endpoint of cardiovascular death, 
AMI, stroke or urgent revascularisation.53 Finally, in cases where 
the thrombus burden remains refractory to standard antiplatelet 
and anticoagulant therapies, colchicine has been shown to be 
associated with thrombus resolution.66

Our 400- patient randomised Colchicine in Percutaneous Coro-
nary Intervention (Colchicine- PCI) trial demonstrated that when 
given as a standard loading dose prior to tissue injury (coronary 
stent placement), colchicine significantly dampened the upreg-
ulation of IL-6 and CRP.67 These effects were observed 22–24 
hours after the acute event, providing a rationale to administer 
colchicine earlier in the disease process to prevent clinical mani-
festations of cytokine- induced injury. Consistent with a possible 
preventive role, colchicine is effective to prevent cytokine- based 
disease flares in gout and familial Mediterranean fever.45 Finally, 
colchicine has also been shown to dampen the inflammatory 
response and reduce CRP levels among subjects with metabolic 
syndrome.68 These data support the general anti- inflammatory 
effect of colchicine, independent of a specific disease state.

Colchicine trials in COVID-19
The recent open- label, multicentre Randomised Evaluation of 
COVID-19 Therapy (RECOVERY) trial in the UK demonstrated 
a reduction in 28- day mortality with dexamethasone (n=2104) 
vs usual care (n=4321) in patients hospitalised with severe 
COVID-19.69 These data support the principle that an anti- 
inflammatory strategy in COVID-19 may be helpful. However, 
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glucocorticoids such as dexamethasone have intrinsic immuno-
suppressive drawbacks that colchicine does not share.

Several early studies have evaluated the benefit of colchicine 
in COVID-19 patients. A retrospective single- centre study of 
87 ICU patients with COVID-19 demonstrated a lower risk 
of death in patients on colchicine (adjusted HR 0.41, 95% CI 
0.17 to 0.98).70 The Greek Effects of Colchicine in COVID-19 
(GRECO-19) trial was the first prospective open- label 
randomised trial evaluating colchicine versus usual care in early 
hospitalised patients. This study of 105 patients found a signif-
icant reduction in the primary clinical outcome of a two- point 
deterioration on WHO disease severity scale.71 The authors 
additionally noted suppression of D- dimer levels in the colchi-
cine vs control group.71 An Italian study compared 122 hospi-
talised patients who received colchicine plus standard- of- care 
(lopinavir/ritonavir, dexamethasone or hydroxychloroquine) 
with 140 hospitalised patients receiving standard- of- care alone. 
Colchicine had a significant mortality benefit (84% vs 64% 
survival) vs controls.72 A third prospective study randomised 38 
hospitalised COVID-19 patients to colchicine or placebo in a 
double- blinded manner.73 Patients receiving colchicine had less 
need for supplemental oxygen at day 7 (6% vs 39%) and were 
more likely to be discharged at day 10 (94% vs 83%). Colchi-
cine subjects also had greater reduction of CRP, and no increase 
in serious adverse events.73 Additional inpatient studies are 
ongoing (online supplemental table 2). Although the permitted 
use of other treatments could have biased the impact of colchi-
cine in these studies, in the GRECO-19 trial no glucocorticoids 
were administered and other medications did not differ between 
the two groups; in the Italian study, there was no difference in 
outcomes among patients given colchicine who did or did not 
also receive dexamethasone.

Given its ease of use, tolerability and low cost, an argument 
for studying colchicine in the outpatient setting, to reduce hospi-
talisation and adverse outcomes, may be even more compelling. 
Unfortunately, data on the use of colchicine in the setting of 
outpatient COVID-19 cases are sparse. In a very small case series 
from Italy, nine outpatients with COVID-19 were administered 
colchicine, of whom only one subject was ultimately hospital-
ised. The hospitalised patient received 4 days of oxygen therapy 
and was discharged.74 Moreover, all patients experienced defer-
vescence within 72 hours of colchicine initiation, suggesting an 
antipyretic effect. While these reports are insufficient to recom-
mend colchicine for COVID-19 in clinical practice, they provide 
support for further study of colchicine in COVID-19, including 
in the outpatient setting. The ongoing ColCorona Trial ( www. 
colcorona. net) is a large placebo- controlled trial of colchicine 
use within 2 days of COVID-19 diagnosis, regardless of symp-
toms, in patients with comorbidities that place patients at a 
higher risk of developing complications related to COVID-19 
that may provide additional information.

CONCLUSIONS
Given the large body of data demonstrating colchicine’s inhibi-
tory effects on neutrophil activity, cytokine generation and the 
inflammation/thrombosis interface, together with an overall lack 
of evidence for systemic immunosuppression, there is a ratio-
nale to study colchicine as a potential treatment for COVID-19. 
Given that colchicine is generally well tolerated, simple to take 
and inexpensive, demonstration of colchicine as a useful agent 
in COVID-19 would potentially spare patients morbidity and 
mortality, help to conserve valuable clinical resources (hospital 
floor and ICU beds, ventilators, etc), and dramatically reduce the 

cost of COVID-19 care. Colchicine might be of particular use 
in resource- poor rural and developing world settings, both of 
which have been increasingly affected by COVID-19. However, 
unless and until evidence is obtained from adequately designed 
and randomised placebo- controlled trials, this hypothesis must 
remain speculative.

The optimal dose of colchicine for daily use, even in well- 
established conditions such as gout, is unknown. Many but not 
all patients tolerate up to 1.2 mg daily in divided doses; whether 
lower doses such as 0.5 mg or less daily can be equally effective is 
unknown. The largest colchicine study for COVID-19 (ColCo-
rona) is testing a dose of 0.5 mg daily based on prior cardiology 
trials. The duration of colchicine therapy for SARS- COV2 infec-
tion would also need to be determined. Most studies to date test 
a treatment duration of 2–4 weeks, concordant with the acute 
course of the infection; whether a shorter or longer treatment 
would be optimal is unknown. Finally, the timing of colchicine 
initiation is uncertain, with some studies beginning treatment in 
the outpatient setting, and others in the early inpatient setting. 
Given the recent track record of failure of treatment of severe 
COVID-19 treatment with anti- IL-6 biologics such as tocili-
zumab (a much more potent but also more specific immunosup-
pressive agent), it is likely that the severe inpatient setting is not 
the optimal condition under which to assess colchicine efficacy.
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